publications

2023

  1. Association of CSF and Serum Neurofilament Light and Glial Fibrillary Acidic Protein, Injury Severity, and Outcome in Spinal Cord Injury
    Sophie Stukas, Jennifer Cooper, Jasmine Gill, Nader Fallah, Michael A Skinnider, Lise Belanger, Leanna Ritchie, Angela Tsang, Kevin Dong, Femke Streijger, and  others
    Neurology, 2023
  2. The Tabulae Paralytica: Multimodal single-cell and spatial atlases of spinal cord injury
    Michael A Skinnider*, Matthieu Gautier*, Alan Yue Yang Teo, Claudia Kathe, Thomas Hutson, Achilleas Laskaratos, Alexandra Coucy, Nicola Regazzi, Viviana Aureli, Nicholas D James, Bernard Schneider, Michael Sofroniew, Quentin Barraud, Jocelyne Bloch, and 3 more authors
    bioRxiv, 2023

2022

  1. The neurons that restore walking after paralysis
    Claudia Kathe*, Michael A Skinnider*, Thomas H Hutson*, Nicola Regazzi, Matthieu Gautier, Robin Demesmaeker, Salif Komi, Steven Ceto, Nicholas D James, Newton Cho, and  others
    Nature, 2022

2021

  1. On the robustness of graph-based clustering to random network alterations
    R Greg Stacey, Michael A Skinnider, and Leonard J Foster
    Mol. Cell. Proteomics, 2021
  2. Cell type prioritization in single-cell data
    Michael A Skinnider*, Jordan W Squair*, Claudia Kathe, Mark A Anderson, Matthieu Gautier, Kaya JE Matson, Marco Milano, Thomas H Hutson, Quentin Barraud, Aaron A Phillips, and  others
    Nature Biotechnology, 2021
  3. PrInCE: an R/Bioconductor package for protein–protein interaction network inference from co-fractionation mass spectrometry data
    Michael A Skinnider, Charley Cai, R Greg Stacey, and Leonard J Foster
    Bioinformatics, 2021
  4. Confronting false discoveries in single-cell differential expression
    Jordan W Squair, Matthieu Gautier, Claudi Kathe, Mark A Anderson, Nicholas D James, Thomas H Hutson, Rémi Hudelle, Taha Qaiser, Kaya JE Matson, Quentin Barraud, and  others
    Nature Communications, 2021
  5. A deep generative model enables automated structure elucidation of novel psychoactive substances
    Michael A Skinnider, Fei Wang, Daniel Pasin, Russell Greiner, Leonard J Foster, Petur W Dalsgaard, and David S Wishart
    Nat. Mach. Intell., 2021
  6. Proteomic portraits reveal evolutionarily conserved and divergent responses to spinal cord injury
    Michael A Skinnider, Jason Rogalski, Seth Tigchelaar, Neda Manouchehri, Anna Prudova, Angela M Jackson, Karina Nielsen, Jaihyun Jeong, Shalini Chaudhary, Katelyn Shortt, and  others
    Mol. Cell. Proteomics, 2021
  7. Prioritization of cell types responsive to biological perturbations in single-cell data with Augur
    Jordan W Squair*, Michael A Skinnider*, Matthieu Gautier, Leonard J Foster, and Grégoire Courtine
    Nature Protocols, 2021
  8. Meta-analysis defines principles for the design and analysis of co-fractionation mass spectrometry experiments
    Michael A Skinnider, and Leonard J Foster
    Nature Methods, 2021
  9. An atlas of protein-protein interactions across mouse tissues
    Michael A Skinnider*, Nichollas E Scott*, Anna Prudova, Craig H Kerr, Nikolay Stoynov, R Greg Stacey, Queenie WT Chan, David Rattray, Jörg Gsponer, and Leonard J Foster
    Cell, 2021
  10. Chemical language models enable navigation in sparsely populated chemical space
    Michael A Skinnider, R Greg Stacey, David S Wishart, and Leonard J Foster
    Nat. Mach. Intell., 2021
  11. Enabling reproducible re-analysis of single-cell data
    Michael A Skinnider, Jordan W Squair, and Grégoire Courtine
    Genome Biol., 2021

2020

  1. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products
    Nishanth J Merwin*, Walaa K Mousa*, Chris A Dejong, Michael A Skinnider, Michael J Cannon, Haoxin Li, Keshav Dial, Mathusan Gunabalasingam, Chad Johnston, and Nathan A Magarvey
    Proc. Natl. Acad. Sci. U.S.A., 2020
  2. Dynamic rewiring of the human interactome by interferon signaling
    Craig H Kerr*, Michael A Skinnider*, Daniel DT Andrews, Angel M Madero, Queenie WT Chan, R Greg Stacey, Nikolay Stoynov, Eric Jan, and Leonard J Foster
    Genome Biol., 2020
  3. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences
    Michael A Skinnider, Chad W Johnston, Mathusan Gunabalasingam, Nishanth J Merwin, Agata M Kieliszek, Robyn J MacLellan, Haoxin Li, Michael RM Ranieri, Andrew LH Webster, My PT Cao, and  others
    Nat. Commun., 2020

2019

  1. Evaluating measures of association for single-cell transcriptomics
    Michael A Skinnider, Jordan W Squair, and Leonard J Foster
    Nat. Methods, 2019

2018

  1. Global analysis of prokaryotic tRNA-derived cyclodipeptide biosynthesis
    Michael A Skinnider, Chad W Johnston, Nishanth J Merwin, Chris A Dejong, and Nathan A Magarvey
    BMC Genomics, 2018
  2. Genomic data integration systematically biases interactome mapping
    Michael A Skinnider, R Greg Stacey, and Leonard J Foster
    PLoS Comput. Biol., 2018
  3. Predictors of sustained research involvement among MD/PhD programme graduates
    Michael A Skinnider, David DW Twa, Jordan W Squair, Norman D Rosenblum, Christine D Lukac, and Canadian MD/PhD Program Investigation Group
    Med. Educ., 2018
  4. Integrated systems analysis reveals conserved gene networks underlying response to spinal cord injury
    Jordan W Squair, Seth Tigchelaar, Kyung-Mee Moon, Jie Liu, Wolfram Tetzlaff, Brian K Kwon, Andrei V Krassioukov, Christopher R West, Leonard J Foster, and Michael A Skinnider
    eLife, 2018
  5. Context-specific interactions in literature-curated protein interaction databases
    R Greg Stacey, Michael A Skinnider, Jenny HL Chik, and Leonard J Foster
    BMC Genomics, 2018

2017

  1. A targeted proteomics analysis of cerebrospinal fluid after acute human spinal cord injury
    Femke Streijger, Michael A Skinnider, Jason C Rogalski, Robert Balshaw, Casey P Shannon, Anna Prudova, Lise Belanger, Leanna Ritchie, Angela Tsang, Sean Christie, and  others
    J. Neurotrauma, 2017
  2. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes
    Michael A Skinnider, Nishanth J Merwin, Chad W Johnston, and Nathan A Magarvey
    Nucleic Acids Res., 2017
  3. Characteristics and outcomes of Canadian MD/PhD program graduates: a cross-sectional survey
    Michael A Skinnider*, Jordan W Squair*, David DW Twa*, Jennifer X Ji*, Alexandra Kuzyk, Xin Wang, Patrick E Steadman, Kirill Zaslavsky, Ayan K Dey, Mark J Eisenberg, and  others
    CMAJ Open, 2017
  4. A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE)
    R Greg Stacey, Michael A Skinnider, Nichollas E Scott, and Leonard J Foster
    BMC Bioinformatics, 2017
  5. Statistical reanalysis of natural products reveals increasing chemical diversity
    Michael A Skinnider, and Nathan A Magarvey
    Proc. Natl. Acad. Sci. U.S.A., 2017
  6. Comparative analysis of chemical similarity methods for modular natural products with a hypothetical structure enumeration algorithm
    Michael A Skinnider, Chris A Dejong, Brian C Franczak, Paul D McNicholas, and Nathan A Magarvey
    J. Cheminform., 2017
  7. Cross-sectional-derived determinants of satisfaction with physician-scientist training among Canadian MD/PhD graduates
    David DW Twa, Michael A Skinnider, Jordan W Squair, Christine D Lukac, and Canadian MD/PhD Program Investigation Group
    PloS ONE, 2017

2016

  1. Informatic search strategies to discover analogues and variants of natural product archetypes
    Chad W Johnston, Alex D Connaty, Michael A Skinnider, Yong Li, Alyssa Grunwald, Morgan A Wyatt, Russell G Kerr, and Nathan A Magarvey
    J. Indust. Microbiol. Biotechnol., 2016
  2. Assembly and clustering of natural antibiotics guides target identification
    Chad W Johnston, Michael A Skinnider, Chris A Dejong, Philip N Rees, Gregory M Chen, Chelsea G Walker, Shawn French, Eric D Brown, János Bérdy, Dennis Y Liu, and  others
    Nat. Chem. Biol., 2016
  3. Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching
    Chris A Dejong*, Gregory M Chen*, Haoxin Li*, Chad W Johnston, Mclean R Edwards, Philip N Rees, Michael A Skinnider, Andrew LH Webster, and Nathan A Magarvey
    Nat. Chem. Biol., 2016
  4. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining
    Michael A Skinnider*, Chad W Johnston*, Robyn E Edgar, Chris A Dejong, Nishanth J Merwin, Philip N Rees, and Nathan A Magarvey
    Proc. Natl. Acad. Sci. U.S.A., 2016

2015

  1. Automated identification of depsipeptide natural products by an informatic search algorithm
    Michael A Skinnider*, Chad W Johnston*, Rostyslav Zvanych, and Nathan A Magarvey
    ChemBioChem, 2015
  2. Exploration of nonribosomal peptide families with an automated informatic search algorithm
    Lian Yang*, Ashraf Ibrahim*, Chad W Johnston*, Michael A Skinnider, Bin Ma, and Nathan A Magarvey
    Chemistry & Biology, 2015
  3. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products
    Chad W Johnston*, Michael A Skinnider*, Morgan A Wyatt, Xiang Li, Michael RM Ranieri, Lian Yang, David L Zechel, Bin Ma, and Nathan A Magarvey
    Nat. Commun., 2015
  4. Genomes to natural products Prediction informatics for secondary metabolomes (PRISM)
    Michael A Skinnider, Chris A Dejong, Philip N Rees, Chad W Johnston, Haoxin Li, Andrew LH Webster, Morgan A Wyatt, and Nathan A Magarvey
    Nucleic Acids Res., 2015
  5. The Canadian clinician-scientist training program must be reinstated
    David DW Twa*, Jordan W Squair*, Michael A Skinnider*, and Jennifer X Ji*
    J. Clin. Invest., 2015

1967

  1. wave-mechanics.gif
    Letters on wave mechanics
    1967

1956

  1. brownian-motion.gif
    Investigations on the Theory of the Brownian Movement
    Albert Einstein
    1956

1950

  1. The meaning of relativity
    Albert Einstein, and AH Taub
    American Journal of Physics, 1950

1935

  1. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
    A. Einstein, B. Podolsky, and N. Rosen
    Phys. Rev., May 1935

1905

  1. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
    A. Einstein
    Annalen der physik, May 1905
  2. Ann. Phys.
    Un the movement of small particles suspended in statiunary liquids required by the molecular-kinetic theory 0f heat
    A. Einstein
    Ann. Phys., May 1905
  3. On the electrodynamics of moving bodies
    A. Einstein
    May 1905